Муниципальное общеобразовательное учреждение «Ревякинская средняя школа» Ясногорского района Тульской области

УТВЕРЖДЕНО
на заседании педагогического совета
(протокол № 1 от 30 августа 2018 г.,
приказ МОУ «Ревякинская средняя
школа» от 01.09.2018 № 49 / 7)
Директор:

Рабочая программа по физике

7-8 класс

Учитель: Григорова Галина Михайловна

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа соответствует требованиям федерального государственного образовательного стандарта основного общего образования (ФГОС), утвержденного приказом Министерства образования и науки РФ от 17.12.2010 г. № 1897 «Об утверждении Федерального государственного образовательного стандарта основного общего образования», и примерной основной образовательной программы основного общего образования, одобренной решением федерального учебно-методического объединения по общему образованию от 08.04.2015 г. № 1/15.

Рабочая программа по физике для 7- 8 классов составлена на основе примерной программы основного общего образования по физике под редакцией В. А. Орлова, О. Ф. Кабардина, В. А. Коровина и др., авторской программы «Физика. 7-9 классы» В.В Белага, В.В. Жумаева, И.А Ломаченкова, Ю.А Панебратцева, федерального компонента государственного стандарта основного общего образования по физике 2004 г.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам курса, последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет минимальный набор демонстрационных опытов, лабораторных работ, календарно-тематическое планирование курса.

Изучение физики на ступени основного общего образования направлено на достижение следующих целей:

- ▶ освоение знаний о механических, тепловых, электромагнитных и квантовых явлениях; физических величинах, характеризующих эти явления; законах, которым они подчиняются, методах научного познания природы и формирование на этой основе представлений о физической картине мира;
- овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений, представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические закономерности, применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
- развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний, при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;
- ▶ воспитание убежденности в возможности познания законов природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники, отношения к физике как к элементу общечеловеческой культуры;

использование полученных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального использования и охраны окружающей среды.

На основании требований к результатам основного общего образования, представленных в федеральном государственном образовательном стандарте основного общего образования, в содержании рабочей учебной программы предполагается реализовать актуальные в настоящее время компетентностный, личностноориентированный, и деятельностный подходы, определяющие задачи обучения:

- > приобретение физических знаний и умений;
- > овладение обобщёнными способами мыслительной, творческой деятельности;
- освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной и профессионально-трудового выбора.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

Физическое образование в основной школе должно обеспечить формирование у обучающихся представлений о научной картине мира — важного ресурса научнотехнического прогресса, ознакомление обучающихся с физическими и астрономическими явлениями, основными принципами работы механизмов, высокотехнологичных устройств и приборов, развитие компетенций в решении инженерно-технических и научно-исследовательских задач.

Освоение учебного предмета «Физика» направлено на развитие у обучающихся представлений о строении, свойствах, законах существования и движения материи, на освоение обучающимися общих законов и закономерностей природных явлений, создание условий для формирования интеллектуальных, творческих, гражданских, коммуникационных, информационных компетенций. Обучающиеся овладеют научными методами решения различных теоретических и практических задач, умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать и анализировать полученные результаты, сопоставлять их с объективными реалиями жизни.

Учебный предмет «Физика» способствует формированию у обучающихся умений безопасно использовать лабораторное оборудование, проводить естественно-научные исследования и эксперименты, анализировать полученные результаты, представлять и научно аргументировать полученные выводы.

Изучение предмета «Физика» в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов (наблюдение, измерение, эксперимент, моделирование), освоения практического применения научных знаний физики в жизни основано на межпредметных связях с предметами: «Математика», «Информатика», «Химия», «Биология», «География», «Экология», «Основы безопасности жизнедеятельности», «История», «Литература» и др.

Курс физики в программе основного общего образования структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Особое внимание при построении курса уделяется тому, что физика и ее законы являются ядром всего естествознания. Поэтому ключевой задачей курса является формирование у учащихся представлений о методах научного познания природы и физической картины мира в целом. Современная физика — быстроразвивающаяся наука, и ее достижения оказывают влияние на многие сферы человеческой деятельности. Курс базируется на том, что физика является экспериментальной наукой, и ее законы опираются на факты, установленные при помощи опытов. Физика — точная наука и изучает количественные закономерности явлений, поэтому большое внимание уделяется использованию математического аппарата при формулировке физических законов и их интерпретации.

МЕСТО УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Согласно базисному учебному плану на изучение физики в объеме обязательного минимума содержания основных образовательных программ отводится **2 ч в неделю** (68 часов за год).

Для организации коллективных и индивидуальных наблюдений физических явлений и процессов, измерения физических величин и установления законов, подтверждения теоретических выводов необходимы систематическая постановка демонстрационных опытов учителем, выполнение лабораторных работ учащимися. Рабочая программа предусматривает выполнение практической части курса:

лабораторных работ и контрольных работ.

2. ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО КУРСА

Личностными результатами обучения физике в основной школе являются:

- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их

- объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметными результатами обучения физике в основной школе являются:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ

В результате изучения курса физики 8 класса ученик должен:

знать/понимать

- > смысл понятий: электрическое поле, магнитное поле;
- **смысл физических величин**: внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, перемещение, скорость, ускорение, сила, импульс;
- **смысл физических законов**: сохранения энергии в тепловых процессах, Ома для участка цепи, Джоуля-Ленца, Ньютона, сохранения импульса;

уметь

- **описывать и объяснять физические явления**: теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, равномерное прямолинейное движение, равнопеременное прямолинейное движение;
- **использовать физические приборы и измерительные инструменты для измерения физических величин**: температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;
- **результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости**: температуры остывающего тела от времени, силы тока от напряжения на участке цепи;
- **»** выражать результаты измерений и расчетов в единицах Международной системы:
- **приводить примеры практического использования физических знаний** о тепловых, электромагнитных, механических явлениях;
- > решать задачи на применение изученных физических законов;
- ▶ осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);
- **умения в практической деятельности и повседневной жизни** для рационального использования, обеспечения безопасности в процессе использования электрических приборов, водопровода, сантехники и газовых приборов.

ОБЩЕУЧЕБНЫЕ УМЕНИЯ, НАВЫКИ И СПОСОБЫ ДЕЯТЕЛЬНОСТИ

На основании требований Государственного образовательного стандарта 2004 г. в содержании календарно-тематического планирования предусмотрено формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами на этапе основного общего образования являются:

Познавательная деятельность:

 использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;

- формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
- овладение адекватными способами решения теоретических и экспериментальных задач;
- экспериментальной проверки выдвигаемых гипотез.

Информационно-коммуникативная деятельность:

- » владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;
- **у** использование для решения познавательных и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

- » владение навыками контроля и оценки своей деятельности, умение предвидеть возможные результаты своих действий;
- организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

Дидактическая модель обучения И педагогические отражают средства модернизацию основ учебного процесса, их переориентацию на достижение конкретных результатов в виде сформированных умений и навыков учащихся, обобщенных способов деятельности. Формирование целостных представлений о физической картине мира будет осуществляться в ходе творческой деятельности учащихся на основе личностного процессов осмысления физических И явлений. Особое внимание уделяется познавательной активности учащихся.

При выполнении творческих работ формируется умение определять адекватные способы решения учебной задачи на основе заданных алгоритмов, комбинировать известные алгоритмы деятельности в ситуациях, не предполагающих стандартного применения одного из них, мотивированно отказываться от образца деятельности, искать оригинальные решения.

Учащиеся должны приобрести умения по формированию собственного алгоритма решения познавательных задач, формулировать проблему и цели своей работы, прогнозировать ожидаемый результат и сопоставлять его с собственными знаниями. Учащиеся должны научиться представлять результаты индивидуальной и групповой познавательной деятельности в формах конспекта, реферата, рецензии, сочинения, резюме, исследовательского проекта, публичной презентации.

Спецификой учебно-исследовательской деятельности является ее направленность на развитие личности и на получение объективно нового исследовательского результата. Цель учебно-исследовательской деятельности — приобретение учащимися познавательно-исследовательской компетентности, проявляющейся в овладении универсальными способами освоения действительности, в развитии способности к исследовательскому мышлению, в активизации личностной позиции учащегося в образовательном процессе.

Реализация календарно-тематического плана обеспечивает освоение общеучебных умений и компетенций в рамках **информационно-коммуникативной деятельности**: способности передавать содержание текста в сжатом или развернутом виде в соответствии с целью учебного задания; проводить смысловой анализ текста; создавать письменные высказывания, адекватно передающие прослушанную и прочитанную информацию с

заданной степенью свернутости (кратко, выборочно, полно); составлять план, тезисы, конспект. На уроках учащиеся должны более уверенно овладеть монологической и диалогической речью, умением вступать в речевое общение, участвовать в диалоге (понимать точку зрения собеседника, признавать право на иное мнение), приводить примеры, подбирать аргументы, перефразировать мысль, формулировать выводы. Для решения познавательных и коммуникативных задач учащимся предлагается использовать различные источники информации, включая энциклопедии, словари, Интернет-ресурсы и другие базы данных. В соответствии с коммуникативной задачей, сферой и ситуацией общения осознанно выбирать выразительные средства языка и знаковые системы: текст, таблицу, схему, аудиовизуальный ряд и др.

Учащиеся должны уметь развернуто обосновывать суждения, давать определения, приводить доказательства (в том числе от противного), объяснять изученные положения на самостоятельно подобранных конкретных примерах, владеть основными видами публичных выступлений (высказывания, монолог, дискуссия, полемика), следовать этическим нормам и правилам ведения диалога, диспута. Предполагается уверенное использование учащимися мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

1.1 Планируемый результат: Распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов.

Умения, характеризующие достижение планируемого результата:

- 1) Распознавать проблемы, которые можно решить при помощи физических методов.
- 2) Анализировать отдельные этапы проведения исследований: проверяемую гипотезу, ход опыта (назначение частей экспериментальной установки), представление результатов.
- **1.2 Планируемый результат:** проводить опыты по наблюдению физических явлений и их свойств: при этом собирать установку из предложенного оборудования; описывать ход опыта и формулировать выводы.

Умения, характеризующие достижение планируемого результата:

- 1) Выбирать оборудование в соответствии с целью исследования.
- 2) Собирать установку из имеющегося оборудования.
- 3) Описывать ход исследования.
- 4) Делать вывод по результатам исследования.

Критерием достижения планируемого результата на базовом уровне считается самостоятельное выполнение при проведении исследования п. 2, 3 и 4. Критерием достижения планируемого результата на повышенном уровне считается выполнение всех перечисленных пунктов 1-4.

1.3 Планируемый результат: Проводить прямые измерения физических величин: *промежуток времени, расстояние, масса тела, температура, сила тока, напряжение,* при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.

Умения, характеризующие достижение планируемого результата:

1) Выбирать измерительный прибор с учетом его назначения, цены деления и пределов измерения прибора.

- 2) Правильно составлять схемы включения измерительного прибора в экспериментальную установку.
- 3) Считывать показания приборов с их округлением до ближайшего штриха шкалы.
- 4) При необходимости проводить серию измерений в неизменных условиях и находить среднее значение.
- 5) Записывать результаты измерений в виде неравенства $x \pm \Delta x$, обозначать этот интервал на числовой оси, совпадающей по виду со шкалой прибора.
- 6) В простейших случаях сравнивать точность измерения однородных и разнородных величин по величине их относительной погрешности.

Критерием достижения планируемого результата на базовом уровне считается выполнение при проведении прямого измерения п. 2-5; а на повышенном уровне всех перечисленных пунктов 1-6. Абсолютная погрешность измерения для используемого прибора предлагается в тексте задания или в справочных материалах.

1.4 Планируемый результат: проводить исследование зависимости физических величин, закономерности которых известны учащимся: указывать закон (закономерность), связывающий физические величины, конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования.

Умения, характеризующие достижение планируемого результата:

- 1) Конструировать экспериментальную установку на основе предложенной гипотезы и избыточной номенклатуры оборудования.
- 2) Проводить прямые измерения величин, указывая показания в таблице или на графике.
 - 3) Строить график зависимости по результатам измерений.
 - 4) Формулировать вывод о зависимости физических величин.
- 5) Оценивать значение и физический смысл коэффициента пропорциональности.

Критерием достижения планируемого результата на базовом уровне считается выполнение при проведении прямого измерения п. 1-4; а на повышенном уровне всех перечисленных пунктов 1-5.Для нахождения абсолютной погрешности измерений учащимся предлагаются справочные таблицы погрешностей используемых средств измерений.

1.5 Планируемый результат: Проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений.

Умения, характеризующие достижение планируемого результата:

- 1) По изученному закону или формуле определять физические величины, подлежащие прямому измерению.
 - 2) Собирать измерительную установку по предложенному перечню оборудования.
- 3) Проводить необходимые прямые измерения в соответствии с предложенной инструкцией.
- 4) Записывать результаты прямых измерений с учетом заданных абсолютных погрешностей измерений.
 - 5) Вычислять (с использованием калькулятора) значение Z_0 измеряемой величины.

Критерием достижения планируемого результата на базовом уровне считается выполнение при проведении косвенного измерения п. 1, 2, 3, 5; а на повышенном уровне всех перечисленных пунктов 1-5. Для нахождения абсолютной погрешности измерений учащимся предлагаются справочные таблицы погрешностей используемых средств измерений.

1.6 Планируемый результат: анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения.

Умения, характеризующие достижение планируемого результата:

- 1) Распознавать в ситуациях практико-ориентированного характера проявление изученных явлений, процессов и закономерностей.
- 2) Применять имеющие знания для объяснения процессов и закономерностей в ситуациях практико-ориентированного характера.
- **1.7 Планируемый результат:** Понимать принципы действия машин, приборов и технических устройств, условия безопасного использования в повседневной жизни.

Умения, характеризующие достижение планируемого результата:

- 1) Различать (указывать) примеры использования в быту и технике физических явлений и процессов.
- 2) Объяснять (с опорой на схемы, рисунки и т.п.) принцип действия машин, приборов и технических устройств и условия их безопасного использования в повседневной жизни.
- **1.8 Планируемый результат:** использовать при выполнении учебных задач научнопопулярную литературу о физических явлениях, справочные издания (на бумажных и электронных носителях и ресурсы Internet).

Умения, характеризующие достижение планируемого результата:

- 1) Использовать при выполнении учебных задач справочные издания.
- 2) При чтении научно-популярных текстов отвечать на вопросы по содержанию текста.
- 3) Понимать смысл физических терминов при чтении научно-популярных текстов.
- 4) Понимать информацию, представленную в виде таблиц, схем, графиков и диаграмм и преобразовывать информацию из одной знаковой системы в другую.
- 5) Применять информацию из текстов физического содержания при выполнении учебных задач.
- **2.1 Планируемый результат:** распознавать физические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания явлений

Умения, характеризующие достижение планируемого результата:

- 1) Распознавать явление по его определению, описанию, характерным признакам.
- 2) Различать для данного явления основные свойства или условия протекания явления.
- 3) Объяснять на основе имеющихся знаний основные свойства или условия протекания явления.
- 4) Приводить примеры использования явления на практике (или проявления явления в природе)
- **2.2** Планируемый результат: Описывать изученные свойства тел и физические явления, используя физические величины; при описании, верно передавать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины.

Умения, характеризующие достижение планируемого результата:

- 1) Описывать изученные явления, используя физические величины, различая физический смысл используемой величины, ее обозначения и единицы измерения.
- 2) Использовать для выявления свойств тел, явлений и процессов физические величины и формулы, связывающие данную физическую величину с другими величинами.
 - 3) Вычислять значение величины при анализе явлений.

2.3 Планируемый результат: анализировать свойства тел, физические явления и процессы, используя физические законы и принципы; при этом словесную формулировку закона и его математическое выражение.

Умения, характеризующие достижение планируемого результата:

- 1) Различать словесную формулировку и математическое выражение закона.
- 2) Применять закон для анализа процессов и явлений.
- **2.4 Планируемый результат:** решать задачи, используя физические законы: на основе анализа условия задачи записывать краткое условие, выделять физические величины и формулы, необходимые для ее решения и проводить расчеты.

Умения, характеризующие достижение планируемого результата:

- 1) Применять законы и формулы для решения расчетных задач с использованием 1 формулы: записывать краткое условие задачи, выделять физическую величину, необходимую для ее решения и проводить расчеты физической величины.
- 2) Применять законы и формулы для решения расчетных задач, с использованием не менее 2 формул: записывать краткое условие задачи, выделять физические величины и формулы, необходимые для ее решения и проводить расчеты физической величины.

3. СОДЕРЖАНИЕ ПРОГРАММЫ УЧЕБНОГО ПРЕДМЕТА

7 класс (68 ч)

I. Физика и мир, в котором мы живем (7 часов)

Что изучает физика. Некоторые физические термины. Наблюдение и опыт. Физические приборы. Физические величины и их измерение. Международная система единиц. Измерения и точность измерений. Погрешности измерений. Мир четырех измерений. Пространство и время.

Демонстрации: примеры механических, тепловых, электрических, магнитных и световых явлений, портреты ученых, физические приборы, схемы, рисунки, таблицы, слайды, модели, видеофильмы (в том числе цифровые образовательные ресурсы), иллюстрирующие связь физики и окружающего мира.

Лабораторные работы и опыты:

- 1. Определение цены деления шкалы измерительного прибора.
- 2. Определение объема твердого тела.

II. Строение вещества (6 часов)

Строение вещества. Молекулы и атомы. Броуновское движение. Диффузия. Взаимодействие частиц вещества. Смачивание и капиллярность. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

Демонстрации: сжимаемость газов, диффузия в газах и жидкостях, модель хаотического движения молекул, модель броуновского движения, сохранение объема жидкости при изменении формы сосуда, сцепление свинцовых цилиндров, схемы, рисунки, таблицы, слайды, модели, видеофильмы (в том числе цифровые образовательные ресурсы), иллюстрирующие строение вещества.

Лабораторные работы и опыты:

3. Измерение размеров малых тел.

III. Движение, взаимодействие, масса (10 часов)

Механическое движение. Относительность движения. Тело отсчета. Траектория. Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Методы измерения расстояния, времени и скорости.

Неравномерное движение. Средняя скорость. Ускорение. Равноускоренное движение. Свободное падение тел. Графики зависимости пути и скорости от времени.

Явление инерции. Взаимодействие тел. Масса тела. Плотность вещества. Методы измерения массы и плотности.

Демонстрации: равномерное прямолинейное движение, относительность движения, равноускоренное движение, свободное падение тел в трубке Ньютона, явление инерции, взаимодействие тел, рисунки, таблицы, слайды, модели, видеофильмы (в том числе цифровые образовательные ресурсы), иллюстрирующие изучаемые понятия.

Лабораторные работы и опыты:

4. Определение плотности твердого тела с помощью весов и измерительного цилиндра.

IV. Силы вокруг нас (10 часов)

Сила. Сила тяжести. Правило сложения сил. Равнодействующая сила. Сила упругости. Закон Гука. Методы измерения силы. Динамометр. Вес тела. Невесомость. Сила трения. Трение в природе и технике.

Демонстрации: зависимость силы упругости от деформации пружины, сложение сил, сила трения, невесомость, рисунки, таблицы, слайды, модели, видеофильмы (в том числе цифровые образовательные ресурсы), иллюстрирующие изучаемые понятия.

Лабораторные работы и опыты:

5. Градуировка динамометра. Исследование зависимости силы упругости от удлинения пружины. Определение коэффициента упругости пружины.

V. Давление твердых тел, жидкостей и газов (10 часов)

Давление твердых тел. Способы увеличения и уменьшения давления. Давление в жидкости и газе. Закон Паскаля. Расчет давления жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Использование давления в технических устройствах. Гидравлические машины.

Демонстрации: зависимость давления твердого тела на опору от действующей силы и площади опоры, закон Паскаля, гидравлический пресс, рисунки, таблицы, слайды, модели, видеофильмы (в том числе цифровые образовательные ресурсы), иллюстрирующие изучаемые понятия.

Лабораторные работы и опыты:

6. Определение давления эталона килограмма.

VI. Атмосфера и атмосферное давление (4 часов)

Вес воздуха. Атмосферное давление. Методы измерения давления. Опыт Торричелли. Приборы для измерения давления.

Демонстрации: обнаружение атмосферного давления, измерение атмосферного давления барометром-анероидом, рисунки, таблицы, слайды, модели, видеофильмы (в том числе цифровые образовательные ресурсы), иллюстрирующие изучаемые понятия.

VII. Закон Архимеда. Плавание тел (6 часов)

Действие жидкости и газа на погруженное в них тело. Закон Архимеда. Условие плавания тел. Воздухоплавание.

Демонстрации: закон Архимеда, рисунки, таблицы, слайды, модели, видеофильмы (в том числе цифровые образовательные ресурсы), иллюстрирующие изучаемые понятия.

Лабораторные работы и опыты:

7. Измерение выталкивающей силы, действующей на погруженное в жидкость тело.

VIII. Работа, мощность, энергия (7 часов)

Работа. Мощность. Энергия. Потенциальная энергия взаимодействующих тел. Кинетическая энергия. Закон сохранения механической энергии. Источники энергии. Невозможность создания вечного двигателя.

Демонстрации: изменение энергии тела при совершении работы, превращения механической энергии из одной формы в другую, рисунки, таблицы, слайды, модели, видеофильмы (в том числе цифровые образовательные ресурсы), иллюстрирующие изучаемые понятия.

Лабораторные работы и опыты:

8. Изучение изменения потенциальной и кинетической энергий тела при движении тела по наклонной плоскости.

IX. Простые механизмы. «Золотое правило» механики (7 часов)

Простые механизмы. Наклонная плоскость. Рычаг. Момент силы. Условия равновесия рычага. Блок и система блоков. «Золотое правило» механики. Коэффициент полезного действия.

Демонстрации: простые механизмы, рисунки, таблицы, слайды, модели, видеофильмы (в том числе цифровые образовательные ресурсы), иллюстрирующие изучаемые понятия.

Лабораторные работы и опыты:

- 9. Проверка условия равновесия рычага.
- 10. Определение КПД наклонной плоскости

8 класс (68 часов)

I. Внутренняя энергия (9 ч)

Тепловое движение. Температура. Связь температуры со средней скоростью движения его молекул. Внутренняя энергия. Два способа изменения внутренней энергии: теплопередача и работа. Виды теплопередачи. Количество теплоты. Удельная теплоемкость вещества.

Демонстрации.

Изменение энергии тела при совершении работы. Конвекция в жидкости. Теплопередача путем излучения. Сравнение удельных теплоемкостей различных веществ.

Лабораторные работы и опыты.

Исследование изменения со временем температуры остывающей воды.

№1. Экспериментальная проверка уравнения теплового баланса.

№2. Определение удельной теплоемкости твердого тела.

II. Изменения агрегатных состояний вещества (7 ч)

Агрегатные состояния вещества. Плавление и отвердевание тел. Температура плавления. Удельная теплота плавления. Испарение и конденсация. Насыщенный пар. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования. Относительная влажность воздуха и ее измерение. Объяснение изменения агрегатных состояний на основе молекулярно-кинетических представлений.

Демонстрации.

Явление испарения. Кипение воды. Зависимость температуры кипения от давления. Плавление и кристаллизация веществ. Измерение влажности воздуха. Психрометр.

Лабораторная работа.

№3.Измерение относительной влажности воздуха.

III. Тепловые двигатели (4 ч)

Энергия топлива. Принципы работы тепловых двигателей. Двигатель внутреннего сгорания. Паровая турбина. Реактивный двигатель. Холодильные машины. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Демонстраиии.

Устройство четырехтактного двигателя внутреннего сгорания. Устройство паровой турбины. Удельная теплота сгорания топлива. Закон сохранения энергии в механических и тепловых процессах.

IV. Электрические явления (22 ч)

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Электроскоп. Проводники и непроводники (диэлектрики). Делимость электрического заряда. Электрон. Строение атомов. Закон сохранения электрического заряда. Электрическое поле.

Электрический ток. Гальванические элементы и аккумуляторы. Электрический ток в различных средах. Действия электрического тока. Направление электрического тока. Электрическая цепь. Сила тока. Амперметр. Электрическое напряжение. Вольтметр. Электрическое сопротивление. Закон Ома для участка электрической цепи. Правила безопасности при работе с источниками электрического тока.

Расчет сопротивления проводника. Удельное электрическое сопротивление. Реостаты. Последовательное и параллельное соединения проводников. Работа и мощность тока. Количество теплоты, выделяемое проводником с током. Закон Джоуля — Ленца.

Лампа накаливания. Электрические нагревательные приборы. Короткое замыкание. Плавкие предохранители.

Демонстрации.

Электризация тел. Два рода электрических зарядов. Устройство и действие электроскопа. Проводники и изоляторы. Электризация через влияние. Перенос электрического заряда с одного тела на другое.

Источники постоянного тока. Действия электрического тока. Составление электрической цепи.

Лампа накаливания. Электрические нагревательные приборы. Плавкие предохранители.

Лабораторные работы.

№4. Сборка электрической цепи и измерение силы тока в ее различных участках.

№5.Измерение напряжения на различных участках электрической цепи.

№6.Измерение сопротивления проводника при помощи амперметра и вольтметра.

№7.Регулирование силы тока реостатом.

№8.Измерение работы и мощности электрического тока.

V. Магнитное поле (5 ч)

Магнитное поле тока. Электромагниты и их применение. Постоянные магниты. Магнитное поле Земли. Магнитные бури. Действие магнитного поля на проводник с током. Электродвигатель.

Демонстрации.

Опыт Эрстеда. Вращение рамки с током в магнитном поле. Электрический двигатель постоянного тока.

Лабораторная работа.

№9. Сборка электромагнита и испытание его действия.

VI. Основы кинематики (9 ч)

Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равнопеременное движение. Мгновенная скорость. Ускорение. Графики зависимости скорости и перемещения от времени при прямолинейном равномерном и равнопеременном движениях.

Демонстраиии.

Равномерное движение. Равнопеременное движение.

Лабораторные работы.

№10.Изучение равномерного прямолинейного движения.

№11.Измерение ускорения прямолинейного равнопеременного движения.

VII. Основы динамики (9 ч)

Относительность механического движения. Инерция. Инерциальная система отсчета. Материальная точка. Первый, второй и третий законы Ньютона. Свободное падение. Невесомость. Импульс силы и импульс тела. Закон сохранения импульса. Реактивное движение.

Демонстрации.

Относительность движения. Свободное падение тел в трубке Ньютона. Второй закон Ньютона. Третий закон Ньютона. Невесомость. Закон сохранения импульса. Реактивное движение.

VIII. Повторение (3 ч)